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Abstract

Spanwise heat transfer in wall turbulence was studied in a turbulent channel flow having a linear spanwise variation
of time-mean temperature just the same as the spanwise variation of wall-temperature. The results of direct numerical
simulation (DNS) for various Prandtl numbers ranging from 0.1-1.5 were compared with existing DNS data for ordinary
two-dimensional heat transfer from uniformly heated walls. The Prandtl number effect on the spanwise eddy diffusivity
of heat was found to be quite similar to that on the wall-normal component. Similarity was also observed between the
destruction of the spanwise turbulent heat flux and that of the wall-normal component. © 1998 Elsevier Science Ltd.

All rights reserved.

Nomenclature
C, specific heat at constant pressure [J kg™' K ']

i unit vector in x direction

k turbulent kinetic energy [m? s 7]

L., L. computational domain size in x and z directions [m]
p pressure fluctuation [Pa]

P pressure deviating from P, [Pa]

P, pressure component generating driving force
=(pU?/8)x+const. [Pa]

Pr Prandtl number = pCv/A

Q4 correlation coefficient = [PY|/(Pims¥/ims)

Re Reynolds number = U,J/v

t time [s]

T temperature [K]

u, v, w velocity fluctuation in x, y and z directions
[ms~']

U, V, W velocities in x, y and z directions [m s~/

U, friction velocity [m s™']

V  velocity vector = (U, V, W) [m s~ ]

x, y, z coordinates in streamwise, wall-normal and
spanwise directions [m]

x; coordinate in ith direction; x,, x, and x; denote x, y
and z, respectively [m].

* Corresponding author.
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Greek symbols

0 channel half width [m]

At time step [s]

Ax, Ay, Az grid spacings in x, y and z directions [m]

¢ dissipation rate of k [m* s

&, wall-normal eddy diffusivity of heat [m*s™']

g,. spanwise eddy diffusivity of heat = —w0/(d{T»/dz)
[m’s~] _

¢, kinematic eddy viscosity = —uv/(dU/dy) [m*s ']

& dissipation rate of 0 [K?s™']

0 temperature fluctuation [K]

® temperature deviating from Ty, [K]

/. thermal conductivity [Wm~' K ']

v kinematic viscosity [m* s~

p density [kg m~?]

T dissipation time scale of velocity fluctuation = k/e [s]
1, _dissipation time scale of temperature fluctuation
= 0%/ey [s].

Superscripts and subscripts

()* non-dimensionalization with U_, v and p

()* non-dimensionalization with U,, 6 and d7,/dz
(7) ensemble average

()w wall.

Miscellaneous
V nabla =(0/0x*, 0/0y*, 0/0z*)
(> time mean.
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1. Introduction

Spanwise or circumferential transfer of heat and mass
in wall turbulent flows plays an important role in many
practical applications. Therefore, several experimental
studies were performed for this type of heat transfer [1—
5], and some closure expressions were proposed for the
spanwise turbulent heat flux or the spanwise eddy diffu-
sivity of heat [3, 6, 7]. Early contributions to this topic
were made by Black and Sparrow [1] and Quarmby and
Quirk [2]. They studied experimentally non-axisymmetric
transfer of passive scalar quantities in a circular pipe, and
reported that the circumferential eddy diffusivities of heat
and mass are much larger than the wall-normal com-
ponents in the vicinity of the wall. Maekawa and his
colleagues [3-5] performed a series of experimental stud-
ies in a turbulent boundary layer of air flow where the
main-stream temperature varied linearly in the spanwise
direction. According to Mackawa et al. [3], the ratio of
the spanwise eddy diffusivity of heat to the kinematic
eddy viscosity, ¢,./¢,,, is almost constant away from the
wall, but it increases rapidly in the vicinity of the wall.
These experimental studies contributed towards clari-
fication of the fundamental aspects of spanwise heat
transfer. However, quantitative accuracy of the existing
experimental data should not be high enough to examine
the prediction performance of the related closure
expressions. For example, the distribution of spanwise
eddy diffusivity of heat reported by Quarmby and Quirk
[2] contains extremely wide scatter, and insufficient accu-
racy of the experimental data was thus suggested.

In the previous study [8], direct numerical simulation
(DNS) was performed for a turbulent channel flow hav-
ing linear spanwise non-uniformity of time-mean tem-
perature equal to the spanwise variation of wall tem-
perature. This flow system is somewhat artificial but
offers a good arena for the discussion of the detailed
features of spanwise heat transfer. The numerical data
demonstrated that there is rough agreement between the
distributions of ¢,_/¢,, and the ratio of spanwise and wall-
normal components of Reynolds normal stresses, sup-
porting the algebraic expressions giving the spanwise
eddy diffusivity of heat proposed by Launder [6] and
Macekawa et al. [3]. As an extension of the previous study,
Prandtl number effects are further examined in order to
obtain deeper insights into the spanwise heat transfer
and to provide more detailed data that can be used to
investigate the reliability of the related turbulence
models. The computational results are discussed in com-
parison with the existing DNS data for an ordinary two-
dimensional heat transfer in a channel with uniform wall
heating.

2. Computational method

The presently used computational domain and coor-
dinate system are shown in Fig. 1. The streamwise, wall-

normal and spanwise coordinates are denoted by x, y and
z, respectively. The wall temperature, Ty, is assumed to
be uniform in the streamwise direction but to vary lin-
early in the spanwise direction. The flow and thermal
fields are assumed to be fully developed. In this situation,
the time-mean temperature, {7, is uniform in the x and
y directions but has a linear spanwise non-uniformity
equal to dTw/dz. Therefore, turbulence statistics depend
solely on the distance from the wall. The working fluid is
assumed to be a Newtonian fluid with constant proper-
ties. Temperature is treated as a passive scalar. Under
these assumptions, the continuity, Navier—Stokes and
energy equations are described, respectively, as

V-Vt =0 1
A +(VT-V)V+ VP* + ! VAV* 4i ®)
. _ _ i

or* Re
00* 1
+ . * 2@ +
P +(Vt-V)O Re Pr PrV O*— W 3)

where all variables are non-dimensionalized with friction
velocity, U, channel half width, ¢, density, p, and
dTy/dz. A constant pressure gradient is provided to drive
the channel flow, and its non-dimensional form cor-
responds to the last term on the right hand side of equa-
tion (2), i. The temperature, 7, is decomposed into the
wall temperature, Ty, and its deviation from Ty, ®. The
last term on the right hand side of equation (3), — W™,
appears due to this decomposition. It is equivalent to
— W*dT*/dz*, and dT*/dz* is equal to unity. Here W™ is
the non-dimensional velocity component in the spanwise
direction.

Spatial periodicity was assumed in describing the
boundary conditions for the streamwise and spanwise
directions. On the wall, pressure was computed using the
compatibility condition

oPt 1 vt
0y*  Re 0y*>

4)

derived from equation (2), where V* is the non-dimen-
sional velocity component in the wall-normal direction.
The temperature fluctuation on the wall was fixed at zero
as was done in the existing DNS performed by Kasagi
and Ohtsubo [9] and Kim and Moin [10].

The finite difference approach is used in the present
DNS. Fourth-order finite differencing is used for all the
spatial derivatives in equations (2) and (3). The finite
differencing of the convection term in the Navier—Stokes
equation is made following the consistent scheme
developed by Kajishima [11] and Suzuki and Kawamura
[12] with modification to secure fourth-order accuracy.
In the time integration of the resulting equations, the
pressure terms are implicitly treated, and the other terms
are evaluated by means of the Adams—Bashforth method.
The Poisson equation derived from equations (1) and (2)
is solved for the pressure. In the derivation of the Poisson
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Fig. 1. Computational domain.

equation, the continuity condition (1) was applied for the
latest velocity components as was done in the fractional
step method and in the MAC (Marker and Cell) method.

The initial value of the streamwise velocity is set to
have the mean part following the wall law with random
fluctuations superimposed on it. Initial values of the other
velocity components, pressure and temperature are all set
to be zero. The computation was proceeded observing
the first and second moments of dependent variables.
After the effect of the initial values fully vanished,
ensemble averaging was performed with respect to time
and locations. For this purpose, numerical results
obtained at positions of equal distance from the wall were
included among the data for averaging. The turbulence
statistics obtained by this averaging are denoted with an
overbar (7) in the following discussion.

The adopted computational conditions are listed in
Table 1. The Prandtl number, Pr, is changed in four
steps from 0.1-1.5 keeping the Reynolds number, Re
(=U.0/v), constant at 150. Total number of 64 x 61 x 64
grid points are allocated in the computational domain
finely in the neighborhood of the wall. A smaller value
of the time step is required for the case of Pr = 0.1 to

Table 1
Computational conditions

Re 150

Pr 0.1,0.3,0.71, 1.5

LJo 7.85

LJ5 3.14

Grid number 64 x 61 x 64

Ax* 18.4

Ayt 1.03-9.51

Azt 7.36

At 0.03 for Pr = 0.1, 0.06 for others

Averaging time span 3450v/U?

suppress the numerical instability more likely to occur
for lower values of Pr. In the previous study [8], com-
parison was made between the mean velocity, various
second-order turbulence statistics of the flow field and
the turbulence energy budget obtained with the same grid
resolution as listed in Table 1 and the counterparts of the
DNS data base [13] constructed by reliable simulation
with finer grid resolution and the larger computational
domain size. There is some discrepancy between both
results with respect to the peak value of Reynolds normal
stresses, and the decay of two-point correlations was not
complete at the separation corresponding to the com-
putational domain half size in comparison with the DNS
data base. These suggest that the density of grid allo-
cation and the computational domain size are not large
enough in the present computation. However, the general
trend of the turbulence statistics agree well with that of
the DNS data base, and the discrepancy found in the
peak of the Reynolds normal stresses was within five
percent. Therefore, computational inaccuracy observed
in the flow field confirmed to be not so serious at least in
the discussion of low-order turbulence statistics.

3. Results and discussion

In the flow under discussion, turbulent heat flux only
has a spanwise component, wf. Figure 2 shows dis-
tributions of w0 for various Prandtl numbers. In this
figure, y* is the non-dimensional distance from the wall,
yU./v, and y* = 150 corresponds to the channel center.
Distributions of w6 have mild peaks around y* = 70.
There exists only a small difference between the dis-
tributions of w for two cases of Pr = 1.5 and Pr = 0.71.
However, when Pris smaller than 0.71, w0 shows remark-
able reduction with a decrease of Pr. As described later,
these features of wl reflect the variations in the budget
of wl. Since the spanwise gradient of time-mean tem-
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Fig. 2. Distributions of spanwise turbulent heat flux.

perature, d{7»/dz, is uniform throughout the flow field,
distributions of w6 and the corresponding eddy diffusivity
of heat, ¢,., are completely similar in shape, and show the
same dependency on the value of Pr.

In liquid metal turbulence, it is well known that the
wall-normal eddy diffusivity of heat, ¢,,, is much smaller
than that for fluids with Pr close to unity [9, 14-18].
According to Azer and Chao [14], the temperature fluc-
tuation induced in low Prandtl number turbulence rap-
idly decays due to strong thermal diffusivity of the fluid.
On the other hand, it is also known that change of ¢, as
well as that of ¢,. is not serious for Pr larger than a critical
value [10, 19]. Therefore, the dependency of ¢, or ¢,. on
the value of Pr shows different features in low and middle
ranges of Pr. As shown in references [9, 19] and in the
later section of the present paper, this should result from
the fact that in the case of the middle range of Pr tur-
bulence mixing plays a more important role in the dim-
inishing of turbulent heat flux than the effect of the ther-
mal diffusivity.

In Fig. 3, comparison is made between two kinds of
correlation coefficients, Q,, and Q.. The latter is the
DNS data calculated by Kim and Moin for the case with
uniformly heated walls at Re = 180 [10]. While the values
of Q,y take zero at the channel center, the values of Q,,
are almost constant over the whole width of the channel.
However, in the region of y* < 100, Q,, and Q,, are
roughly equal to each other for the same value of Pr, and
together increase slightly with the decrease of Pr. .

As observed in Fig. 4, the temperature variance, 6°
reduces as Pr is decreased. The reduction of 0* arises
partly from the decrease in the production rate,

—wbd{T)/dz. However, this effect is trivial for Pr larger
than 0.71, since w0 is not substantially affected by the
value of Pr at such high values of it. Another point is
related with the Prandtl number effect on the dissipation
time scale of temperature fluctuation, 7, Figure 5 shows
the time scale ratio, t,/t, where 7 is the dissipation time
scale of velocity fluctuation. The behavior of t,/t indi-
cates that the lifetime of temperature fluctuation becomes
shorter with the decreasing of Pr. The result of Kasagi
and Ohtsubo [9] for the case of uniformly heated walls
at Re = 150 is also plotted in Fig. 5. Since the temperature
fluctuation is assumed to be zero at the wall in both
computations, the values of 7,/t are theoretically deduced
to

To/t = Pr asyt —0. (5)

Launder [6] examined the behavior of the eddy diffu-
sivity ratio, ¢,./¢;,, assuming that the spanwise and wall-
normal components of turbulent heat flux, wf and v0,
are in the local equilibrium and that related fluctuations,
w, 0, are of the local isotropy. Due to these assumptions,
the pressure—temperature gradient correlation becomes a
solitary term balancing with the production term. He
approximated this term so as to be proportional to the
corresponding turbulent heat flux and derived

g/1:/8/1_1' = wyz /U2 . (6)

Here, w? and v” are the spanwise and wall-normal com-
ponents of the Reynolds normal stress, respectively. Fig-
ure 6 shows the eddy diffusivity ratio, ,./¢,,, for the two
cases of Pr = 0.1 and Pr = 0.71, where the data of ¢, is
quoted from the DNS result by Kim and Moin [10]. The
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Fig. 4. Distributions of temperature variance.

Reynolds number used by Kim and Moin is 180 and is
slightly larger than the present condition. The Reynolds
normal stress ratiof/?, is also shown in this figure. The
distribution of w?/v’, indicates the asymptotic behavior
of the Reynolds stresses such that w? decreases more
gradually than v* when approaching the wall. The value
of ¢,./e, becomes smaller especially in the near-wall

region when Pr is decreased. However, there is a rough
similarity between distributions of ¢,./e,, and the dis-
tribution of w?/v?. Thus, equation (6) approximately
holds for these values of Pr.

Rogers et al. [7] performed the DNS of homogeneous
turbulent shear flow with mean temperature gradients in
each of the three orthogonal directions. In their result,
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Figure 7 shows the computational results of each term in
equation (7) with the residual of this equation. Since
temperature is considered to be a passive scalar in this
study, w? included in the production rate of w6 should
not depend on Pr. This results in the same distribution
of the production rate for different values of Pr. The
following three features are common for all the studied
cases. (1) In the whole channel width except the viscous
sublayer (y* > 5), the production rate, the pressure—tem-
perature gradient correlation (P-TG) and the dissipation
rate are dominant, and w0 is nearly in the local equi-
librium. (2) The turbulent diffusion takes a mild peak
around y* = 10, but its peak value is very small com-
pared with the production rate over the whole channel
width. (3) In the viscous sublayer of y* < 5, the molec-
ular diffusion and the dissipation rate balance with each
other.

As shown in Fig. 7, P-TG and the dissipation have a
sign opposite to the production term, and are supposed
to be major processes suppressing excessive growth of
the turbulent heat flux. The term destruction is used to
denote these processes. In all the cases, the dissipation
rate is a dominant term of the total destruction in the
region of y* < 10. In the remaining region, P-TG and
the dissipation are competitive processes for the destruc-
tion of w0, and their contributions to the total destruction
vary dramatically with the change of Pr. In this region, P—
TG is distinctively larger than the dissipation for Pr = 1.5
and Pr = 0.71. Since P-TG corresponds to the destruc-
tion through the turbulent mixing, it should be almost
independent of Pr. This is consistent with the afore-
mentioned feature of wf that its dependency on Pr is
weak for Pr larger than 0.71. The contribution of the
dissipation to the total destruction grows with decreasing
Pr, and becomes dominant over the whole channel width
for the case of Pr = 0.1. A similar trend of the dissipation
was also reported by lida and Kasagi [20] for the lateral
turbulent heat flux in the homogeneous turbulence.
According to their discussion, the wave number range
where the turbulent heat flux is dissipated shifts to the
lower side with the decrease of Pr, but the wave number
range in which destruction by turbulence mixing occurs
does not basically depend on the value of Pr. This should
lead to the increasing rate of the dissipated turbulent heat
flux and shortening of the time span from the birth of
turbulent heat flux to its dissipation. This effect would
cause the reduction of wé observed in the present com-
putation.

With regard to the effect of Pr on the destruction of
turbulent heat flux, a similar tendency was also found in
a turbulent channel flow with uniformly heated walls
[19]. The value of Pr for which P-TG or, in contrast, the
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Fig. 7. Budgets of spanwise turbulent heat flux.

dissipation dominates the destruction of v is roughly
equal to the counterpart of the present study. Therefore,
in the case of Pr = 0.71 where equation (6) was shown
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to approximately hold, P-TG is larger in the destructions
of w0 and v0, and the related fluctuations almost satisfy
the local isotropy assumed by Launder in the derivation
of equation (6). However, in the case of Pr = (0.1 where
equation (6) still holds, the dissipation is dominant in the
destructions of both wl and v0. At this value of Pr, the
total destruction including the dissipation should match
the Launder’s approximation made for P-TG, namely
that P-TG is proportional to the corresponding turbulent
heat flux.

4. Conclusions

Direct numerical simulation (DNS) was performed for
the simple case of spanwise heat transfer in wall turbu-
lence, namely a turbulent channel flow with a linear span-
wise non-uniformity of time-mean fluid temperature
equal to the non-uniformity of the wall temperature. The
present results for Prandtl number, Pr, ranging from
0.1-1.5 were compared with the existing DNS data for
ordinary two-dimensional heat transfer in a channel flow
with uniform wall heating. The following conclusions are
derived.

(1) The spanwise eddy diffusivity of heat, ¢,., shows
remarkable reduction with decreasing of Pr. This
reduction of ¢,_ is quite similar to the behavior of the
wall-normal eddy diffusivity of heat, ¢,, in a channel
flow with uniformly heated walls.

(2) The eddy diffusivity ratio &,./e,, is almost uniform
away from the wall, but it changes steeply in the
near-wall region. The distribution of ¢,./¢,, for both
Pr=0.71 and Pr = 0.1 roughly agrees with the dis-
tribution of the Reynolds normal stress ratio, w?/v”.
Therefore, the proposition of Launder ¢,./¢,, = w*/v*
nearly holds in a wide range of Pr.

(3) Since the Reynolds number treated in the present
computation is comparatively low, not only the pres-
sure—temperature gradient correlation but also the
dissipation take part in the destruction of wf. The
contribution of the dissipation to the total destruc-
tion increases as Pr decreases. This trend of the dis-
sipation is similar to the counterpart of v previously
reported in the case of uniform wall heating.
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